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This study investigated the role of inhibition in second language (L2) learners’ phonological 

processing. Participants were Spanish learners of L2 English and American learners of L2 

Spanish. We measured inhibition through a retrieval-induced inhibition task. Accuracy of 

phonological representations (perception and production) was assessed through a speeded ABX 

categorization task and a delayed sentence repetition task. We used a measure of L2 vocabulary 

size to tease out L2 proficiency effects. Higher inhibitory control was related to lower error rate 

in segmental perception. Inhibition was also related to consonant but not to vowel production 
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accuracy. These results suggest a potential role for inhibition in L2 phonological acquisition, 

with inhibition enhancing the processing of phonologically relevant acoustic information in the 

L2 input, which in turn might lead to more accurate L2 phonological representations. 
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Introduction 

In the foreign language classroom, students often struggle with pronunciation and listening, and 

the challenge of acquiring the phonological system of a second language (L2) is met with 

variable outcomes. Certain learning conditions are more favorable than others, such as longer 

and more intensive exposure to L2 input (e.g., Flege, Yeni-Komshian, & Liu, 1999) and more 

frequent use of the L2 (e.g., Guion, Flege, & Loftin, 2000). Students’ first language (L1) 

background also plays a role in L2 acquisition (e.g., Flege, Bohn, & Jang, 1997). Yet, even when 

these variables are kept identical, such as in the case of a homogenous student population, large 

individual differences remain in production and perception (e.g., Pallier, Bosch, & Sebastián-

Gallés, 1997). Factors underlying individual differences examined in previous research include, 

among others, motivation (Moyer, 1999), singing talent and musical ability (Christiner & 

Reiterer, 2013; Slevc & Miyake, 2006), sound processing ability (Golestani & Zatorre, 2009; 

Lengeris & Hazan, 2010), and cognitive skills, such as working memory (e.g., Reiterer et al., 
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2011), phonological short-term memory (Cerviño-Povedano & Mora, 2011; Darcy, Park, & 

Yang, 2015; MacKay, Meador, & Flege, 2001), attention (Darcy, Mora, & Daidone, 2014; Guion 

& Pederson, 2007; Safronova & Mora, 2013), and inhibition (e.g., Lev-Ari & Peperkamp, 2013).  

Although some of these cognitive factors have been shown to be globally related to 

bilingual speech processing, it is still not well understood how they specifically relate to the 

perception and production of L2 segments (vowels and consonants) by instructed adult L2 

learners. The goal of this study was to further explore this relationship, focusing on inhibitory 

control, because stronger inhibitory control could reduce interference from the L1, and thus 

enhance the processing of acoustic-phonetic information in the input. This in turn could lead to 

more accurate L2 phonological representations, as reflected in the more accurate perception and 

production of L2 segments. Late L2 learners (N = 34) from two different L1 backgrounds took 

part in an inhibitory control task, and in tasks of perception and production of various L2 

contrasts, to examine whether individual performance in one measure relates to performance in 

the other.  

Inhibitory Control and Language Processing 

Inhibition is an important executive function encompassing a variety of response-related 

selection processes that involve multiple inhibitory systems (see Kok, 1999, and Nigg, 2000, for 

taxonomies of inhibitory processes). For example, Friedman and Miyake (2004) identified three 

main inhibition-related functions: (a) the ability to suppress a dominant, automatic, prepotent 

response (Prepotent Response Inhibition), (b) the ability to resolve interference from information 

irrelevant to the task at hand (Resistance to Distractor Interference), and (c) the ability to resist 

interference from information that was previously relevant to the task but has since become 

irrelevant (Resistance to Proactive Interference). An important distinction to be made between 
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these three inhibitory control processes is that the first two generally involve relatively 

conscious, effortful control processes that lead to the active suppression of a response, whereas 

the third results directly from language processing (see also Miyake et al., 2000). Arguably, all 

three are involved in L2 acquisition at various stages and at various levels of processing. More 

importantly for the purposes of the present study, Miyake and Friedman’s (2012) more recent 

findings suggest that individual differences in executive functions, such as updating (monitoring 

and updating of working memory contents) and shifting (switching between mental sets), reflect 

individual differences in inhibitory control, thus underscoring the potential of inhibition for 

subsuming general individual differences in executive control. 

In bilingual research, inhibition has been proposed as the cognitive control mechanism 

responsible for preventing the selection of nontarget language words during speech production 

(Green, 1998). This is achieved by bilinguals inhibiting the activation of nontarget lexical 

representations when speaking the selected target language, so that inefficient inhibitory control 

would lead to interference from the language not in use (e.g., Spivey & Marian, 1999). Several 

studies have tested the consequences of cross-language interference at the phonetic level within a 

language switching paradigm for bilingual speakers. A consistent finding in this research is that 

L2-to-L1 and L1-to-L2 interference in phonetic production (e.g., voice onset time [VOT] in the 

production of oral stops) occurs when switching between languages and is modulated by the 

speakers’ degree of bilingual experience and proficiency in the test languages (Filippi, 

Karaminis, & Thomas, 2014; Goldrick, Runnqvist, & Costa, 2014; Olson, 2013). Similarly, 

Filippi, Leech, Thomas, Green, and Dick (2012) simultaneously presented two sentences (one in 

Italian and one in English) to Italian-English bilinguals and English controls and found that 

bilinguals were better able to resist sentence-level interference during comprehension.  
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Inhibition can also result effortlessly from lexical processing itself by inducing a decrease 

in activation levels through lexical retrieval. Such retrieval-induced inhibition tasks (Anderson, 

R. Bjork, & E. Bjork, 1994; Perfect, Moulin, Conway, & Perry, 2002; Veling & Knippenberg, 

2004) have shown that retrieving items from memory (e.g., apple) belonging to a given lexical 

category (e.g., fruit) causes inhibition (i.e., suppression of activation) of nonretrieved items (e.g., 

pear) in the same category, leading to the participant’s inability to recall an inhibited item 

(forgetting) or to slower retrieval. Interestingly, retrieval-induced inhibition has also been shown 

to work across languages, modulating cross-language interference and inhibiting learners’ L1 

phonology. For example, Levy, McVeigh, Marful, and Anderson (2007) found that the more 

often L1 English learners of L2 Spanish repeatedly named objects in Spanish (e.g., repeating 

culebra “snake” one, five, or 10 times), the harder it became for them to recall the corresponding 

English name (snake) when cued by a rhyming English word (e.g., break).  

Individuals, whether fully functional bilinguals in two or more languages or less 

proficient late L2 learners, may vary in their inhibitory control capacity. Several studies have 

shown that individual differences in inhibitory control explain variations in performance on 

language processing tasks. For example, bilinguals with more efficient inhibitory control exhibit 

less cross-language competition in picture naming tasks (Linck, Hoshino, & Kroll, 2008) and 

during spoken bilingual word recognition, compared to bilinguals with less efficient control 

(Mercier, Pivneva, & Titone, 2014). Bilinguals with better control also obtain shorter switch 

costs when shifting between languages (Linck, Schwieter, & Sunderman, 2012), and they are 

more efficient in planning and producing L2 speech irrespective of L2 proficiency (Pivneva, 

Palmer, & Titone, 2012). 
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Importantly for the current study, inhibitory control has also been linked to the amount of 

influence that the phonology in bilinguals’ one language has on the phonology in their other 

language. Lev-Ari and Peperkamp (2013) demonstrated a relationship between inhibition and L1 

phonological attrition, such that speakers with higher inhibitory control scores showed less L2 

influence in their L1 VOT perception and production. The researchers employed a retrieval-

induced inhibition task to measure the inhibitory skill of L1-dominant English-French bilinguals 

who resided in France and used both English and French daily. The lower the speakers’ 

inhibitory skill was, the more they produced and perceived VOT in English voiceless stops (/p, t, 

k/) in a French-like manner; that is, greater inhibitory skill allowed speakers to avoid L2 use 

effects in their L1. 

Although Lev-Ari and Peperkamp (2013) investigated inhibitory control and its 

relationship to L1 phonology, their findings have important implications for L2 phonological 

processing. It is possible that strong inhibitory control could also minimize the effects of L1 

phonology on L2 phonology. Put differently, being able to suppress the L1 more robustly could 

help L2 users reduce interference from their L1 segment categories during L2 use, thus allowing 

for more accurate perception and production of L2 segments. To our knowledge, no study thus 

far has shown a link between inhibitory control and perception or production of difficult L2 

phonological contrasts. 

The Present Study 

Given that inhibitory control has been linked to L2 acquisition and processing, but the 

relationship between L2 speakers’ inhibitory control ability and their L2 phonological processing 

is still largely unknown, we set out to examine the relationship between the strength of L2 

learners’ inhibitory control and their accuracy in perceiving and producing L2 segments. We 
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hypothesized that stronger inhibitory control would correlate with more accurate L2 perception 

and production, since learners who are better able to suppress their L1 may have less influence 

from L1 phonological categories when speaking and listening to the L2. We also obtained 

measures for several demographic variables (e.g., age of first exposure to the L2, length of 

residence abroad, current L2 use) for all participants in order to facilitate analyses of individual 

differences. 

To obtain generalizable findings regarding inhibition and phonological processing that 

are independent of the specific experimental items, we tested two groups of late adult L2 learners 

differing in their L1s (L1 English learners of Spanish and L1 Spanish learners of English) using 

the same stimuli, which contained items in their L1 and L2 (Spanish and English). This 

bidirectional approach, in which the two groups completed the same tasks in their respective L2, 

served as an internal control for the stimuli and allowed us to be more confident in the 

generalizability of our findings across different groups of L2 learners. We chose to measure 

phonological processing in both perception and production, using an ABX task for perception 

(Analysis 1) and a delayed sentence repetition task for production (Analysis 2), as described 

below. We used a retrieval-induced inhibition task to assess learners’ inhibitory control and 

performed analyses of individual learner differences, targeting the relationship between measures 

of phonological processing and inhibition scores while taking into account learners’ proficiency 

as measured through a vocabulary knowledge test. 

Participants and Overall Design 

A total of 81 participants were tested: 35 L1 Spanish learners of English in Seville (Spain), 26 L1 

English learners of Spanish in Bloomington, Indiana (USA), and 20 controls to provide 

performance baselines for the tasks (10 native speakers of each L1, tested in the same locations 
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as the L2 learners). Participants were tested as part of a larger project that included other 

cognitive measures not reported here.1 The order of tasks was the same for all participants with 

slight adjustments where necessary (e.g., only the learners completed L2 vocabulary tasks) and, 

in general, included the production task first, followed by the cognitive tasks, the perception task, 

and the vocabulary test at the end. Participants had to pass a pure-tone audiometry test at octave 

frequencies between 500 and 8,000 Hz at 20 dB HL (Reilly, Troiani, Grossman, & Wingfield, 

2007) in order to be included in the analysis. A total of 11 L2 English learners and four L2 

Spanish learners were excluded because they had failed the audiometry test. Additionally, one 

L2 English participant was excluded because he was an early Catalan/Spanish bilingual, and two 

L2 Spanish participants were excluded because their native speaker (NS) status was unclear or 

because they reported to have had very early exposure to a language other than English. Further, 

two NS controls (one English, one Spanish) were also excluded from the analysis, either because 

their NS status was unclear or because of the presence of a speech/hearing pathology. In total, 

data from 58 participants were included: 23 L2 English participants, 20 L2 Spanish participants, 

and 15 NS controls (eight English, seven Spanish). Table 1 summarizes descriptive statistics for 

the main background variables for each group. 
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Table 1 Means (standard deviations in parentheses) for participants’ demographic variables 

Variable L2 English (n = 22) L2 Spanish (n = 20) NSs (n = 15) 

Age at testing 23.1 (4.8) 19.7 (1.0) 21.6 (2.9) 

Motivation (1–9) 7.5 (0.7) 7.4 (0.9) 6.3 (1.2) 

Current L2 use (max. 36) 16.4 (5.6) 9.1 (6.8) 4.6 (6.6) 

Self-rating (1–5) 4.0 (0.5) 4.0 (0.6) 1.9 (0.9) 

Residence abroad (weeks) 4.5 (8.8) 10.8 (27.4) 0.3 (1.1) 

Years of study 11.7 (2.5) 8.7 (2.8) 4.0 (3.8) 

Age of first L2 exposure 8.0 (3.1) 8.5 (4.3) 10.1 (3.5) 

Age of first L2 use 12.9 (5.0) 10.6 (3.9) 14.0 (4.6) 

Gender (female) 16 17 10 

Handedness (left-handed) 3 4 0 

 

 A composite motivation score was obtained by averaging each participant’s ratings on 

nine motivation items presented through 9-point Likert scales (1 = strongly agree, 9 = strongly 

disagree). The questions asked about the degree with which participants felt motivated to learn 

or use the L2 (see Appendix S1 in the Supporting Information online); a higher score indicates 

greater motivation. Current L2 use was determined via an average score (0–36) obtained by 

adding up participants’ selected level of intensity of L2 use (0 = 0%, 1 = 1–25%, 2 = 26–50%, 3 

= 51–75%, 4 = 76–100%) in nine contexts of language use (e.g., with friends, at home/work, 

media). L2 self-evaluation was a self-reported estimate of participants’ ability to speak 

spontaneously, understand, read, and write the L2, using the following descriptions (recoded as 

numeric scores): very poorly (1), poorly (2), passably (3), well (4), very well (5). A mean self-
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evaluation score was obtained by averaging the four scores for each participant. Proficiency was 

assessed as vocabulary size using the X-Lex test (see below). 

Analysis 1: Perception 

Materials and Procedure 

To assess L2 perceptual processing, we administered a speeded ABX categorization task (e.g., 

Gottfried, 1984). In each trial, participants heard three stimuli in a row and had to choose if the 

last token (X) was more similar to the first token (A) or to the second token (B). To increase task 

demands, the stimuli consisted of trisyllabic nonwords in both Spanish and English with the 

structure CV.ˈCV.CV(C), such as [faˈneða] or [fəˈni:dɪʃ]. Stimuli in both languages were 

recorded by two female early balanced bilinguals (Mexican Spanish/American English) so that 

participants could hear both test and control stimuli in the same voice. Furthermore, physically 

different tokens were used in each trial: One voice was used for the A and B tokens, and the 

other for the X token. Two different voices were used within each trial to ensure that participants 

had to make a decision according to the phonological category of the stimuli rather than relying 

on low-level acoustic traces, as the exact acoustic properties of the stimuli differed across 

speakers. All participants heard all Spanish and English stimuli in two separate blocks of 64 

trials each. The design was such that nonnative contrasts for L2 learners of English were native 

contrasts for L2 learners of Spanish and vice versa (see Table 2). For example, /i-ɪ/ (as in feet-

fit), which is phonemically contrastive in English but not in Spanish, was a nonnative contrast for 

the L2 English group; therefore, the results of the L1 English (L2 Spanish) group for that 

contrast served as a baseline. All contrasts were produced using appropriate phonetic realizations 

for each language (see Appendix S2 in the Supporting Information online). 
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Table 2 Contrasts used in the ABX task and associated subconditions 

Group Vowel contrasts Consonant contrasts Common contrasts 

L2 English  e–ei̯  vowelS native 

i–ɪ  vowelE nonnative 

d–ɾ consS native 

ʃ–ʧ consE nonnative 

a–ɪ ctrlVS 

t–d  ctrlCS 

L2 Spanish  e–ei̯ vowelS nonnative 

i–ɪ  vowelE native 

d–ɾ  consS nonnative 

ʃ–ʧ consE native 

a–ɪ  ctrlVE  

t–d  ctrlCE  

Note. consE = English consonant; vowelE = English vowel; consS = Spanish consonant; vowelS 

= Spanish vowel; ctrlCE = control English consonant; ctrlVE = control English vowel; ctrlCS = 

control Spanish consonant; ctrlVS = control Spanish vowel. 

 

We predicted that group performance would be more accurate for native contrasts over 

nonnative ones. However, since nativeness covaried with stimulus language (i.e., phonetic 

realizations were L1 specific), it was important to add a control condition where only stimulus 

language varied, not nativeness, by choosing contrasts common to both languages. By 

determining that stimulus language did not influence performance in the control condition, we 

could attribute differences in performance in the test condition to the nativeness of the contrasts. 

Conversely, if L1-specific phonetic realization triggered an advantage in performance in the 

control condition, it would be more difficult to clearly attribute potential accuracy differences to 

the nativeness of the contrasts. 

For L2 Spanish, the perception of nonnative /e-ei̯/ (as in reno-reino “reindeer-kingdom”) 

was hypothesized to be difficult for this group of learners based on perceptual mapping data 

(Morrison, 2006). The perception of the nonnative /d-ɾ/ test contrast (as in cada-cara “each-

expensive”) has been shown to pose difficulty to low-intermediate learners (Rose, 2010). For L2 

English, the nonnative contrast /i-ɪ/, which is subject to developmental stages of acquisition, has 

previously been found to be perceived either inaccurately or not at all by L2 English learners 

(e.g., Morrison, 2009). The nonnative /ʃ-ʧ/ contrast (as in ship-chip) has been shown to not be 
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accurately realized in production (e.g., Anrrich, 2007) and was therefore hypothesized to be 

difficult in perception. In total, four nonword pairs per condition were tested. Each pair was 

repeated in four combinations (ABA, ABB, BAA, and BAB), yielding a total of 128 trials, 64 for 

each stimulus language. Trials were assigned to two blocks according to stimulus language 

(English-Spanish or vice versa), and block order was counterbalanced across participants. Within 

each block, trials were randomized. If a participant made no response within 2,500 milliseconds, 

the next trial was initiated. The task was administered on a PC through headphones using the 

presentation software DMDX (Forster & Forster, 2003). 

Results  

Results for the 58 participants were screened for outliers by examining individual performance in 

the control condition. For each group, one learner and one NS whose performance in the control 

condition was below two standard deviations from their respective group mean were excluded 

from analyses. This left 22 L2 English learners and six Spanish NSs, as well as 19 L2 Spanish 

learners and seven English NSs for analysis. The proportion of errors (%) and mean reaction 

time (RT) for each participant were computed across four trials per item (with four items per 

condition) for each of the eight subconditions.  

Preliminary Analyses 

In order to first ascertain whether the L2 learners performed like the NS controls when 

processing native stimuli, we compared the error rate and RT performance for both L2 learners 

and NS controls for the same L1 contrasts. For each language (L1 English, L1 Spanish), two 

mixed-effects models were fitted in SPSS 22 for both error rate and RTs, using group (NS, L2 

learner), condition (test, control), and stimulus language (native, nonnative) as fixed-effects 

factors. Participant was declared as a random factor. For both error rate and RT in each language, 
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the three-way interaction between the fixed factors was not significant. This suggests that within 

each language, performance of the two groups was not modulated by the combination of 

condition and stimulus language. More specifically, for either dependent variable, there was no 

difference between groups for either test or control condition when the stimuli were native (all p 

> .10) as shown in Table 3. 

 

Table 3 Estimated mean differences (ΔM) in mean error rates (%) and RTs (ms) between 

learners and controls for perception of English and Spanish stimuli 

Stimuli Variable Condition ΔM SE p 95% CI 

English Error Control –2.9 2.8 .299 –8.5, 2.7 

Test –1.2 2.8 .659 –6.8, 4.3 

RT Control –16.8 90.1 .853 –201.7, 168.1 

Test –74.9 90.1 .413 –259.8, 110.0 

Spanish Error Control 0.5 3.2 .870 –5.7, 6.8 

Test 1.9 3.2 .541 –4.3, 8.2 

RT Control 12.4 116.5 .916 –226.1, 250.9 

Test –5.4 116.5 .964 –243.8, 233.1 

Note. ΔM = mean difference, SE = standard error, CI = confidence interval. 

 

For the English stimuli, the learners made on average 2.1% fewer errors than the NSs for 

control and test stimuli; this difference was not significant. The 95% confidence interval (CI) for 

this estimated difference was similar for both conditions. Similarly, for the Spanish stimuli, the 

learners made on average 1.2% more errors than the NSs for control and test stimuli, a difference 

that was also nonsignificant. The CI for this estimated difference was similar for both conditions. 
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The mean differences in RT (with negative values indicating that the NSs are slower by that 

amount [in milliseconds] than the learners) suggest that the two groups processed the L1 stimuli 

with similar RTs. The difference was not significant in any condition, and 95% CIs for the 

control and test mean differences overlap in both conditions. This result implies that the L2 

learners, while processing the L1 stimuli, performed like NSs. The L2 learners’ performance on 

L1 stimuli can therefore be considered an internal control condition, serving as the basis for 

comparing the two learner groups to each other using the same stimuli. Full descriptive statistics 

for participants’ performance in the perception task are summarized in Appendix S3 in the 

Supporting Information online.  

Overall Error Rate and Reaction Time 

A linear mixed-effects model was fitted for the error and RT patterns. The factors L1 Group 

(English, Spanish), stimulus language (Spanish, English), and condition (control, test) were used 

as fixed effects; participants and items were used as random effects. The parameter estimates for 

each model (error, RT) are presented in Appendix S4 in the Supporting Information online. Type 

III tests of fixed effects for error rate revealed that there was a significant triple interaction 

between L1, stimulus language, and condition, F(1, 1262) = 58.40, p < 0.001. When listening to 

either language, an effect of L1 was only visible in the test condition, not in the control condition 

(both p > .10). For English test stimuli, English L1 mean error was 4.1%, Spanish L1 mean error 

was 18.6%, and the mean difference was 14.5 (CI = 10.6–18.4). For Spanish test stimuli, Spanish 

L1 mean error rate was 10.8%, English L1 rate was 21.5%, and the mean difference was 10.8 (CI 

= 6.9–14.6, both p < .001). Similarly, for both groups, stimulus language significantly affected 

performance only in the test condition (both p < .001), not in the control condition. Put 

differently, in the test condition only, when listening to the L1 stimuli and native contrasts, 
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participants made fewer errors than when listening to the L2 stimuli and nonnative contrasts (see 

Appendix S3).  

For RT, type III tests of fixed effects revealed that the three-way interaction between L1, 

stimulus language, and condition was also significant, F(1, 1265) = 15.7, p < .001. For both 

groups, stimulus language had a significant effect on RT in the test condition (both p < .001), 

such that participants were slower for L2 stimuli/nonnative contrasts compared to L1 stimuli. In 

the control condition, stimulus language did not affect performance in the L2 Spanish group (p > 

.10), but it did affect performance in the L2 English group (p < .001). L1 Spanish participants 

were slower to respond to L2 English stimuli in both the test and control conditions. Reasons for 

slower RTs in this control condition are unclear, and an analysis of individual performance 

showed large variability in participants’ mean RT in this condition. Because variability did not 

seem consistent across conditions, we decided against using RTs to examine individual 

differences. Therefore, all subsequent analyses involve error rate data only. 

Error Rate Across Vowel and Consonant Contrasts 

The following analyses compared participants’ error rates across separate vowel and consonant 

contrasts, using a linear mixed-effects model. The factors group (L2 English, L2 Spanish) and 

subcondition (consE, vowelE, consS, vowelS, ctrlCE, ctrlVE, ctrlCS, ctrlVS, as indicated in 

Table 2) were modeled as fixed effects. Participant was used as a random effect. Parameter 

estimates for the model (error) are presented in Appendix S5 in the Supporting Information 

online, and Figure 1 displays the error rates in each of the eight subconditions. 
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Figure 1 Mean proportion error for each learner group in each subcondition (vowels and 

consonants). White bars represent nonnative contrasts, dark bars represent native contrasts (test 

condition). Light grey bars in the top panels represent common contrasts (control condition). 

Error bars enclose ±1 SE. 

Type III tests of fixed effects for error rates revealed that there was no significant main 

effect of L1, F(1, 39) = 2.30, p > .10. Both groups’ overall error rate was very similar, and 

confidence intervals overlapped for L2 Spanish (Merr = 7.6%, CI = 5.4–9.8) and L2 English (Merr 

= 9.7%, CI = 7.7–11.8). However, there was a significant main effect of subcondition, F(7, 1254) 

= 35.4, p < .001, mainly driven by the four test subconditions featuring nonnative contrasts, for 

which error rate was much higher overall (Merr = 13.8%) than for the control subconditions (Merr 

= 3.6%). The interaction between group and subcondition was also significant, F(7, 1254) = 

27.4, p < .001. Univariate tests revealed that performance of the two groups differed only for the 

test subconditions consS, vowelE, and vowelS (all p < .001), such that each group performed 
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more accurately on the native relative to the nonnative stimuli. In other words, the L2 English 

group outperformed the L2 Spanish group in the Spanish conditions (consS, vowelS), whereas 

the L2 Spanish group outperformed the L2 English group in the English condition (vowelE). The 

test subcondition consE did not show a significant group effect because both groups performed 

with similar accuracy in that condition (see Figure 1). Performance of both groups was similar in 

all control subconditions (all p > .10). 

Pairwise comparisons (with Sidak adjustment for multiple comparisons) were carried out 

to examine differences between subconditions within the L2 Spanish group. These tests showed 

that none of the control subconditions differed from the consE or vowelE subconditions, but that 

all control subconditions triggered significantly fewer errors than the nonnative consS or vowelS 

subconditions (all p < .01). The test subconditions consE and vowelE did not differ from each 

other (Merr = 4.6%, CI = 1.0–8.2; and Merr = 3.6%, CI = 0–7.2, respectively), but they triggered 

significantly fewer errors than the nonnative consS and vowelS subconditions (Merr = 24.0%, CI 

= 20.4–27.6; and Merr = 19.1%, CI = 15.5–22.7, respectively). Finally, performance in these two 

nonnative consS and vowelS subconditions did not differ (p > .10), but was significantly less 

accurate than in all other conditions (all p < .01).  

For the L2 English group, a similar picture emerged, with one crucial difference: Pairwise 

comparisons showed that none of the control subconditions differed from the native vowelS 

subcondition. Unexpectedly, however, the native consS subcondition (Merr = 11.6%, CI = 8.3–

15.0) elicited significantly less accurate performance, compared to three out of the four control 

conditions. This can be explained by the fact that the /d-ɾ/ contrast used in this condition is 

generally difficult to perceive (Daidone & Darcy, 2014). All control subconditions triggered 

fewer errors (Merr = 4.0–5.7%, CI = .6–9.0) than the nonnative vowelE subcondition (Merr = 
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29.3%, CI = 25.9–32.6; all p < .01). However, none of the control subconditions differed from 

the consE subcondition (Merr = 8.0%, CI = 4.6–11.3). Performance on the native consS and 

vowelS subconditions did not differ (Merr = 11.6%, CI = 8.3–15.0; and Merr = 9.9%, CI = 6.6–

13.3, respectively), but both triggered significantly fewer errors than the nonnative vowelE 

subcondition (Merr = 29.3%, CI = 25.9–32.6). Unexpectedly, however, like the control 

conditions, the two native test subconditions also did not differ from the nonnative consE 

subcondition, which was quite accurate (Merr = 8.0%, CI = 4.6–11.3). Finally, participants were 

significantly more accurate on the consE than on the vowelE subcondition, and while the error 

rate on consE did not differ from any other subconditions (except vowelE), vowelE differed 

significantly from all others. As shown in Figure 1, for the L2 English group, error rate for the 

nonnative test consonant contrast /ʃ-ʧ/ (consE) was as low as for the native contrasts. 

Discussion  

The source of observed difficulties in perception can be attributed to the nonnativeness of the 

contrasts tested. When a contrast was common to the L1 and L2, error rates were low, 

irrespective of the language in which the stimuli were recorded. However, the bilingual ABX 

task revealed specific difficulties with nonnative contrasts for both learner groups, with the 

exception of the English consonant contrast /ʃ-ʧ/, which did not pose difficulties for the L2 

English learners. In fact, the ranges and standard deviations of individual performances in the 

nonnative vowel conditions were very similar for both L2 groups (see Table 4) but differed in the 

consonant conditions. Because the consonant conditions for the L2 English group exhibited less 

individual variation than the other conditions, for the purpose of this study, we used each 

individual’s performance (error rate) in the nonnative vowel conditions as a measure of L2 

perceptual processing. However, since the two means in the vowel conditions differed (as shown 
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by the nonoverlapping CIs), even though the range of performance was the same, we computed a 

z score for the individual error rate (see below). 

 

Table 4 Descriptive statistics for nonnative vowel and consonant perception (percent error) and 

inhibition (score) 

Group Measure M SD Range 95% CI 

L2 English English vowel 29.3 22.0 0.0–75.0 25.9, 32.6 

L2 Spanish Spanish vowel 19.1 20.0 0.0–75.0 15.5, 22.7 

L2 English English consonant 8.0 14.0 0.0–50.0 4.6, 11.3 

L2 Spanish Spanish consonant 24.0 23.0 0.0–75.0 20.4, 27.6 

L2 English Inhibition 1.1 0.3 0.4–1.7 0.9, 1.2 

L2 Spanish Inhibition 1.0 0.1 0.8–1.3 0.9, 1.1 

Note. CI = confidence interval. 

 

Analysis 2: Production 

Materials and Procedure  

We examined the same contrasts as those used in perception through a delayed sentence 

repetition task (e.g., Trofimovich & Baker, 2006), either in the L2 (for the learners) or in the L1 

(for the controls). There were four pairs of sentences for each contrast, for a total of 16 sentences 

per language (see Appendix S6 in the Supporting Information online). Participants sat in front of 

a computer screen in a sound-isolated recording booth, wearing high quality dynamic stereo 

headphones. Materials were displayed on the screen from slides in Microsoft PowerPoint. 

Participants’ productions were recorded on a computer or through a digital recorder at a 

sampling rate of 22,050 Hz with a 16-bit resolution in a mono channel. The audio files were then 
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spliced into individual sentences for acoustic analysis in Praat (Boersma & Weenink, 2013). In 

each trial, participants heard a question (prompt), followed after 250 milliseconds by an answer 

(response). After a 500 millisecond delay, the prompt was presented again, and the participants 

had to repeat aloud the response heard previously. The written sentences appeared on the screen 

together with the first auditory presentation of the prompt-response pair, and disappeared for the 

second presentation of the prompt and for the recording of the answer. All L2 learners received 

instructions in their respective L1 and completed a warmup prompt in the L1 before moving on 

to the L2. Controls completed the set in their L1. Participants were allowed to repeat trials once 

in case of hesitations or misremembered words (in these cases, only the second recording was 

analyzed). This task took about 5–7 minutes to complete. The sentence prompts and the 

corresponding responses in both languages were recorded by the same two female bilinguals and 

were normalized for amplitude. In half the sets, one voice was used for the prompt token and the 

other was used for the response tokens; the reverse was done for the remaining sets.  

Data Analysis  

For the L2 Spanish learners, we predicted that both the monophthong /e/ (e.g., pena [ˈpena] 

“shame”) and the diphthong /ei̯/ (e.g., peina [ˈpei̯na] “[he/she] combs”) would be produced 

similarly (Morrison, 2006), more specifically like a long, diphthongized vowel similar to the 

English /eɪ/ (e.g., [ˈpeɪna]). That is, compared to NSs, we expected that L2 learners’ 

monophthongs would display more formant movement and be longer; conversely, L2 learners’ 

diphthongs were expected to display less formant movement. Hence, the overall vowel duration 

was measured, and three measurement points were located 20%, 50%, and 80% into the vowels. 

A duration ratio (diphthong/monophthong) was calculated to assess differences in duration 

between diphthongs and monophthongs while controlling for individual variation in speech rate. 
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The mean values for F1, F2, and f0 (fundamental frequency) were extracted from a 10 

millisecond window centered at the three measurement points. These frequency measures were 

first converted to Bark, and then a Bark-distance metric was applied, subtracting B0 from B1 

(B1-B0) for vowel height and B1 from B2 (B2-B1) for degree of vowel fronting, where “B” 

stands for Bark-converted frequency (Hz) values (Baker & Trofimovich, 2005; Bohn & Flege, 

1990). The amount of formant movement in the vowel was obtained by computing the Euclidean 

distance between the 20% and the 50% measurement points and between the 50% and the 80% 

measurement points. The two Euclidean distances were added. This spectral distance score was 

used as a measure of formant movement, as represented in the Bark-normalized vowel space. 

For the /d-ɾ/ contrast (e.g., cada [ˈkaða] “each” vs. cara [ˈkaɾa] “face”), we predicted that 

learners’ productions would be ambiguous at best between /d/ and /ɾ/. Specifically, we expected 

/d/ (spirantized [ð]) to be realized without the spirantization. For the tap, we expected a number 

of realizations, from the English-like alveolar approximant to an English-like /d/. Given the 

variety of possible realizations, it was not practical to obtain specific acoustic measures. Instead, 

we visually and auditorily examined the spectrograms and made a categorical decision about the 

accuracy of the target realizations of intervocalic /d/ and intervocalic /ɾ/. The L2 Spanish 

productions were scored as accurate only when they presented the auditory and acoustic 

characteristics found in the native Spanish productions: the /d/ produced as a spirantized [ð] and 

the /ɾ/ produced as a single-closure tap with a very short constriction duration. For each 

participant’s four tokens of /d/ and four tokens of /ɾ/, every correct production was given one 

point, and every incorrect production was given a score of zero, thus yielding a score out of 

eight. An interrater reliability analysis revealed 95.6% agreement between our categorical 

production scores and those of a L1 Spanish naïve listener (Cohen’s κ = .92).  
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For the L2 English learners, in the case of the /i-ɪ/ contrast, we predicted that both 

duration and spectral realizations would differ from NS productions. Because Spanish learners of 

English have been shown to rely primarily on duration cues in distinguishing this tense-lax 

vowel contrast, unlike native English speakers who rely primarily on spectral cues (e.g., 

Morrison, 2008, 2009), a duration ratio (tense/lax) was computed as a measure of accuracy in 

temporally differentiating the two vowels. To obtain spectral measures, F1, F2, and f0 were 

extracted from a 15 millisecond window centered at the midpoint of the steady-state portion of 

the second formant of the vowel. The Euclidean distance between the contrasting vowels in a 

Bark-normalized vowel space was taken as a measure of accuracy in spectrally differentiating 

the two vowels. For the /ʃ-ʧ/ contrast, we predicted that both sounds might be realized as the 

affricate /ʧ/. Spectrograms were visually and auditorily examined to make a categorical decision 

about the accuracy of production. The L2 English productions were scored as accurate if 

produced as palatoalveolar and exhibited presence (/ʧ/) or absence (/ʃ/) of a closure. As in the 

analysis of the /d-ɾ/ tokens, this yielded a score out of eight. Interrater reliability reached 99.5% 

between our categorical production scores and those of a L1 English naïve listener (Cohen’s κ = 

.98). 

Results 

Spanish Contrasts 

The L2 Spanish learners (n = 19) produced Spanish monophthongs with significantly longer 

duration (M = 97 ms, SD = 14) than native controls (n = 6) did (M = 84 ms, SD = 7), Mann-

Whitney U = 20.0, z = –2.35, p = .017, r = .47. However, both speaker groups produced 

diphthongs of similar duration (M = 113 ms, SD = 15; and M = 113 ms, SD = 13, respectively), 

Mann-Whitney U = 62.0, z = .32, p = .78, r = .06. Overall, diphthongs were produced with 
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significantly longer durations than monophthongs by both the L2 Spanish learners, t(18) = 4.95, 

p < .001, r = .58, and native controls, Wilcoxon T < .001, p = .028, r = .90. However, the L2 

Spanish learners produced the diphthong-monophthong contrast with significantly smaller 

duration ratios (M = 1.16, SD = .14) than the Spanish natives did (M = 1.35, SD = .16), Mann-

Whitney U = 93.0, z = 2.29, p = .021, r = .46, suggesting that, as expected, they produced a 

smaller duration distinction in the production of this vowel contrast compared to native controls. 

The two groups differed in the amount of formant movement during vowel production. 

The L2 Spanish learners were found to produce the Spanish diphthong /ei̯/ with much less 

formant movement (M = 1.18, SD = .55) than native controls (M = 3.19, SD = .71), as shown in 

Figure 2, Mann-Whitney U = 113.0, z = 3.56, p < .001, r = .71. However, contrary to our 

predictions, the L2 Spanish learners did not produce the Spanish monophthong /e/ as an English-

like diphthongized vowel. Instead, they produced both vowels as a monophthongal /e/, with very 

little formant movement (1.18 for diphthongs vs. .92 for monophthongs, SD = 0.36), t(18) = 

1.92, p = .071, r = .17, but distinguished them through duration. For the /d-ɾ/ contrast, the L2 

Spanish learners obtained an average score of 4.88 (SD = 2.38, range = 0–7), representing 52.4% 

of targetlike productions, whereas the NSs performed at ceiling (M = 7.89, SD = .41). 
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Figure 2 Amount of formant movement for diphthongs (circles) and monophthongs (diamonds) 

for native speakers (left) and L2 learners (right). 

 

English Contrasts  

For the production of English /i-ɪ/, the L2 English learners (n = 22) differed from the L1 English 

controls (n = 7) in that they produced these vowels with less distinct quality and duration. The 

L2 English learners produced /i/ significantly higher and more fronted than /ɪ/, in terms of B1-B0 

values (1.56 vs. 1.86 for /i/ and /ɪ/, respectively), t(21) = –4.27, p < .001, r = .46, and B2-B1 

values (10.56 vs. 10.16 for /i/ and /ɪ/, respectively), t(21) = 4.48, p < .001, r = .48. However, they 

did not show sufficiently large spectral distances in the production of the contrast to be 

comparable to the L1 English speakers’ productions; the L2 English learners (M = .61, range = 

.13–1.39, SD = .35) obtained significantly smaller mean spectral distance scores (Euclidean 

distances in Bark) than the L1 English speakers did (M = 3.87, range = 3.12–5.12, SD = 0.76), 

Mann-Whitney U = 154.0, z = 3.92, p < .001, r = .73. Similarly, the L2 learners’ duration ratios 

(M = 1.08, SD = .17) were much smaller than the L1 English speakers’ ratios (M = 1.20, SD = 
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.15), but the difference did not reach significance, Mann-Whitney U = 109.0, z = 1.63, p = .11, r 

= .30. The learners produced these vowels with almost distinct durations (M = 87 ms, SD = 18 

for /i/; M = 82 ms, SD = 13 for /ɪ/) approaching significance, t(21) = 2.04, p = .054, r = .16. For 

the NSs, the difference was larger (M = 101 ms, SD = 21 for /i/; M = 85 ms, SD = 17 for /ɪ/). 

Overall, the results indicate that the L2 English learners had difficulty with producing a clear 

distinction between the two English vowels. For the /ʃ-ʧ/ contrast, the L2 English learners 

obtained an average score of 7.02 (SD = 1.23, range = 4–8), representing 86.1% of targetlike 

productions, whereas the NSs’ productions were 100% accurate, as expected. 

Discussion 

This analysis examined vowel and consonant production for the same contrasts as the ones tested 

in perception, and the results matched the perception data. The learners’ difficulties were 

pronounced for both vowel contrasts. The learners were less accurate at spectrally differentiating 

the tense/lax and monophthong/diphthong contrasts, compared to the native controls. For 

consonants, the results were mixed. While the /d-ɾ/ contrast presented difficulties for many L2 

Spanish learners, the fricative-affricate /ʃ-ʧ/ contrast, which only appeared word-initially in our 

materials, was not problematic for the L2 English learners. One possibility is that the fricative-

affricate contrast was easier for the English learners because [ʃ] is used in Andalusian Spanish as 

a result of the weakening of /ʧ/ (e.g., muchacho [muˈʃaʃo] “boy,” Hualde, 2005). However, 

speakers of Andalusian Spanish using /ʃ/ are also constantly exposed to standard Spanish (using 

only /ʧ/), and their phonology might include two variants of the same category determined 

dialectally ([ʧ] and [ʃ]), possibly facilitating the production of this English contrast. Another 

potential reason for the accuracy differences observed between vowels and consonants is that our 

scoring system left less room for individual differences in consonants with a score out of eight, 
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as compared to detailed acoustic analyses of vowels. Therefore, it was decided to keep both 

scores separate, with no composite production score calculated for vowels and consonants. 

Analysis 3: Retrieval-Induced Inhibition 

Materials and Procedure 

In the present study, individual differences in inhibitory control were measured as retrieval-

induced inhibition (Anderson et al., 1994; Veling & van Knippenberg, 2004). The inhibitory 

control task, based on the task in Lev-Ari and Peperkamp (2013), was administered through E-

prime in the participants’ L1 only and took about eight minutes to complete. Participants 

memorized six words of three different categories (vegetables, occupations, or animals) presented 

visually on the screen and then practiced only half the items from two categories (e.g., tomato, 

nurse) by typing them several times on the screen. This increased the level of activation of the 

practiced items and was expected to cause the inhibition (i.e., decrease in the level of activation) 

of the unpracticed items in these practiced categories. By contrast, the items from the unpracticed 

category were not inhibited and served as control items. Participants were then tested on the 

recognition of the practiced items as well as two types of unpracticed items (in addition to new 

distractors to make the task more meaningful): (a) those from the two practiced categories 

(inhibited) and (b) those from the unpracticed category (control). Participants with greater 

inhibitory skill were expected to bring the unpracticed items in practiced categories to lower 

activation levels, with the consequence that retrieval RTs during recognition would be longer for 

these items than for practiced and control items. 
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Results and Discussion 

Given that inhibition of lexical items depends on the practice of some items, participants who did 

not recall two or more items out of six in the practiced categories were excluded from the 

analyses (one L2 Spanish learner, leaving 19 participants; six L2 English learners, leaving 17). 

Therefore, the data for 36 L2 learners were analyzed. Following Lev-Ari and Peperkamp (2013), 

median recognition RTs were computed for each participant. The median RT was faster for the 

practiced items (Mdn = 807 ms) than for the inhibited items (Mdn = 985 ms), a significant 

difference, t(35) = –3.05, p = .002, r = .21. However, despite the tendency for the inhibited items 

to be slower than the nonpracticed control items (Mdn = 933 ms), this difference was not 

significant in the group analysis, t(35)  = –.60, p > .10, r = .01. This comparison still confirmed 

that the nonpracticed items from the practiced categories had been inhibited, as shown by their 

significantly longer RTs as compared to the practiced items. Following Lev-Ari and Peperkamp 

(2013), an inhibitory control score was obtained by dividing the median RT for inhibited items by 

the median RT for control items, such that the higher the score above 1, the stronger the 

inhibition. The bottom two rows in Table 4 present descriptive statistics for each group. One 

extreme score (3.05) was removed from the L2 English group to make the distribution comply 

with criteria for normality. A t test (unequal variances, two-tailed) confirmed that both learner 

groups did not differ significantly in inhibition scores, t(19) = .73, p > .10. Thus, inhibitory 

control skill, and the subsequent analyses of the participants’ phonological processing in relation 

to it, was not L1 dependent, allowing us to merge both learner groups for analyses. 
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Analysis 4: Relationship Between Inhibition and Phonological Processing 

Data Analysis 

Because our goal was to examine factors related to L2 phonological processing, only the data 

from the L2 learners were included in these analysis. Out of the 43 L2 learners tested initially, 

only 34 (16 L2 English, 18 L2 Spanish) with complete data in all tasks were included in the 

correlation analyses. One difficulty with collapsing data from two different L2 groups is that 

they may vary in L2 proficiency. The L2 learners’ overall proficiency was measured through a 

test which was designed to assess receptive lexical knowledge in learners (X-Lex, providing a 

vocabulary size estimate of 0–5,000 words, Meara, 2005) and whose scores have been shown to 

relate to L2 proficiency levels (Miralpeix, 2012). Vocabulary size was then included as a 

covariate in the analyses, in order to tease out this variable from other effects. Full descriptive 

statistics for 43 learners’ background variables appear in Appendix S7 in the Supporting 

Information online. 

A series of Mann-Whitney U tests showed that the L2 English learners were slightly 

older in age at testing, U = 242.50, z = 3.54, p < .001, r = .61, used their L2 more often, U = 

234.50, z = 3.14, p = .001, r = .54, had studied their L2 for a longer period of time, U = 226.50, z 

= 2.87, p = .003, r = .49, and had a greater L2 vocabulary size, U = 277.00, z = 4.59, p < .001, r 

= .79, compared to the L2 Spanish learners. However, these learner groups did not differ in 

motivation, self-assessed ability in L2 speaking and listening, or the age at which they first 

started to learn and use their L2. In sum, the L2 English learners appeared to be slightly more 

proficient in their L2 than the L2 Spanish learners, a group difference we controlled for by using 

proficiency scores. The descriptive statistics for the target variables used in the correlation 

analyses are shown in Table 5.  
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Table 5 Means (standard deviations in parentheses) for L2 learners’ cognitive and phonological 

measures 

Variable L2 English (n = 16) L2 Spanish (n = 18) All learners (n = 34) 

Inhibition score 1.05 (0.30) 1.01 (0.11) 1.03 (0.21) 

ABX error (vowels) 0.29 (0.12) 0.20 (0.14) 0.24 (0.14) 

ABX z score 2.98 (1.50) 1.36 (1.63) 2.12 (1.75) 

Consonant production (max. 8) 6.91 (1.27) 4.09 (2.45) 5.41 (2.42) 

Vowel production z score –3.68 (0.43) –2.54 (0.78) –3.08 (0.86) 

 

The perception scores used for each participant were z scores for the error rate in the 

perception of nonnative vowels in Analysis 1; these z scores were based on the mean and 

standard deviations for the NSs of the learners’ respective L2 (e.g., for the L2 English learners, 

the values were taken from the English NSs). The production score for consonants corresponded 

to the number of correct productions (out of eight) for nonnative contrasts by each participant. 

Given that the NSs’ mean accuracy was at ceiling (SD = 0), we did not compute a z score for 

consonant production accuracy. Finally, to avoid issues related to comparing raw spectral 

distance scores (formant movement for diphthongs vs. spectral quality for /i-ɪ/) for the vowel 

production measure, we computed a z score for each participant based on the means and standard 

deviations for the NSs of the learners’ respective L2, thus making individual scores more 

comparable. 

Results 

We first examined how the scores in perception related to the scores in production.2 Given our 

modest sample size, we also report marginally significant correlations. As shown in Table 6, the 
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L2 learners’ self-estimates of listening and speaking ability were correlated with each other, but 

they showed no relationship with their performance in perception and production. By contrast, 

our perception measures (raw error rate and z scores for ABX) correlated with the consonant 

production score, such that a learner with a lower error rate (or lower, more nativelike z score) 

was also more accurate in consonant production. Both the ABX z score and consonant 

production measures were also marginally related with vowel production scores, in what at first 

glance looks like the opposite of what was predicted.  

 

Table 6 Partial correlations (Pearson) between production and perception measures, controlling 

for proficiency with X-Lex scores 

Measure 1 2 3 4 5 6 

1. Self-rated speaking —      

2. Self-rated understanding 0.43** —     

3. ABX z score –0.08 0.16 —    

4. ABX error (vowels) –0.09 0.15 0.99** —   

5. Consonant production 0.16 –0.06 –0.33* –0.40*  —  

6. Vowel production 0.21 0.03 –0.24† –0.19 –0.26† — 

Note. n = 33. †p < .10, *p < .05, **p < .01, one-tailed. 

 

 The vowel scores were also z scores (mostly negative for the learners), indicating that the 

learners obtained significantly smaller mean spectral distance scores (Euclidean distances in 

Bark) relative to the NSs. By contrast, the ABX z score was mostly larger than 0 because the 

learners made more errors on average relative to the NSs. Therefore, a score closer to 0 in both 

cases indicated more targetlike performance. Thus, the relationship was as expected in both 
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cases: The lower (closer to 0) the z score in ABX for perception, the higher (closer to 0) it was 

for vowel production (also a z score). Put differently, the fewer errors someone made in ABX 

perception, the more nativelike his or her vowel production was. Similarly for consonants, higher 

accuracy in producing consonants was associated with more nativelike vowel production. 

 

Table 7 Partial correlations (Pearson) between phonological performance and inhibition scores 

for all learners, controlling for proficiency with X-Lex scores 

 Phonological measure Inhibition 

ABX error (vowels) –0.42** 

ABX z score –0.39* 

Consonant production    0.34* 

Vowel production  –0.04 

Note. n = 33. *p < .05, **p < .01, one-tailed. 

 

Table 7 summarizes the results of correlation analyses between inhibition scores and the 

four phonological accuracy scores (controlling for proficiency). These correlations show that 

error rate and z scores in ABX perception were significantly negatively correlated with inhibition 

scores, which indicates that individuals with higher inhibition scores also obtained lower error 

rates and lower (more targetlike) z scores in vowel perception. For the consonant score, the same 

relationship emerged in a partial correlation: A significant association was found, such that the 

learners with a higher inhibition score also obtained higher accuracy scores in consonant 

production. No clear pattern emerged between vowel production and inhibition scores. Two 

regression analyses (summarized in Table 8) showed that the inhibition score was a significant 
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predictor of ABX perception error rate and perception z scores. Inhibition explained about 18% 

of the overall variance in perception error rates (p = .018) and perception z scores (p = .029) 

when controlling for proficiency. This relationship is illustrated graphically in Appendix S8 in 

the Supporting Information online. 

 

Table 8 Results of hierarchical regressions using inhibition as predictor of ABX error rate and 

ABX z scores, controlling for proficiency with X-Lex scores 

Criterion variable Predictor R2 B 95% CI t p 

ABX error rate (vowels) X-Lex 0.00 0.02 0.00, 0.00 0.13 .901 

Inhibition 0.18 –0.42 –0.49, –0.05 –2.51 .018 

ABX z score  X-Lex 0.04 0.16 0.00, 0.01 0.93 .359 

Inhibition 0.18 –0.38 –6.01, –0.35 –2.29 .029 

 

 

Discussion 

Overall, inhibition correlated with perception and production scores in the expected direction. 

Once proficiency was controlled (through partial correlations), individuals with higher inhibition 

scores were found to have both lower error rates and more nativelike z scores in the vowel 

perception task. There was also a significant relationship between inhibition scores and higher 

accuracy in consonant production. Surprisingly, no relationship emerged between vowel 

production accuracy and inhibition scores. In sum, the relationship between inhibition and 

perception appeared stronger than the relationship between inhibition and production.  

This differential effect of inhibition on perception and production may be due to the 

inherently different nature of the processing mechanisms which govern speech perception and 
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production and which might involve different inhibition types. Our inhibition task falls under the 

“resistance to proactive interference” type outlined by Friedman and Miyake (2004). This type of 

inhibition might be highly relevant for category learning, helping learners form accurate vowel 

categories, for instance, while resisting interference from L1-specific memory traces during 

perception. We interpret the relationship between inhibition scores and ABX perception to mean 

that those who demonstrated higher inhibition scores may have used this ability in the past to 

support the learning of L2 segmental categories. Thus, the learners with stronger inhibitory 

control may have had an advantage over those with poorer inhibitory control during the course of 

L2 acquisition; this advantage would have enabled learners to develop more accurate 

representations for L2 segments by virtue of their greater capacity to avoid L1 interference 

during L2 phonological processing. 

For production, in addition to having accurate segmental categories, dominant motor 

(articulatory) plans from the L1 must be inhibited while speaking. Therefore, it is perhaps not so 

surprising that the relationship between production and inhibition was less strong in our data; this 

is because we measured inhibition through a task evaluating resistance to proactive interference. 

We might have observed a different relationship if we had also used a measure of motor-based 

inhibition (e.g., the Simon task). In addition, given the possibility that the target consonant 

contrasts were not ideal to reveal sufficient variation among learners, especially among the L2 

English learners, we interpret the consonant results with caution; this issue needs to be 

reexamined in future research. 

However, the obtained perception-production difference in inhibitory control may be 

unrelated to L1 inhibition effects in L2 learning.3 It is possible that our inhibition measure 

reflected the participants’ ability to inhibit the wrong response alternative in the ABX task, that 
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is, within the L2. Hence, it is theoretically possible that the inhibition relationship was stronger 

for perception than for production because the ABX task required more, while the production 

task required less, inhibition within the L2. This hypothesis could explain how those learners 

with stronger inhibition scores also made fewer errors in the vowel perception task. If correct, 

this alternative might involve specifically the inhibition of a dominant response: The ABX task 

structure presented participants with two alternative responses (A, B) and participants’ decision 

in selecting the correct alternative for X was based, among other factors, on acoustic/phonetic 

similarity. Hence, upon hearing the X token (if X = A), a participant had to reject the competing 

alternative (B). Phonetically speaking, therefore, B was more different from X than A. It is not 

immediately clear how rejecting the wrong (i.e., acoustically more dissimilar) response 

alternative might involve using inhibitory control, as the wrong response does not automatically 

qualify as the dominant response that is to be inhibited. If this were the case, we should have also 

observed a similar result pattern in the control condition. This was not the case in our data, but 

the control condition was not designed to allow for this analysis. In addition, it is also not 

immediately clear—if ABX scores are to be explained via inhibition of a dominant response— 

why the ABX scores would correlate with the kind of inhibition we measured in our task, 

involving resistance to proactive interference (see Friedman & Miyake, 2004, showing that 

dominant response inhibition was not correlated with resistance to proactive interference). 

In sum, to fully rule out an alternative explanation for our findings, it would be necessary 

to use a variety of inhibition tasks, which measure resistance to a dominant response, as well as 

resistance to proactive interference (which we argue might be related in important ways to 

resisting interference from the L1 during acquisition). In addition, a task such as ABX should be 

designed to allow for subsequent analysis of the specific latency and error patterns in the various 
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stimulus configurations, to evaluate the extent to which inhibition within the L2 might play a role 

above and beyond the phonological categorization performance that might result from inhibition 

of the L1 phonological system. In particular, such an analysis could indicate whether individual 

differences in inhibitory control would result in a task effect or, as in our main interpretation, 

would reflect a learning facilitation mechanism. 

Last but not least, we also observed a general lack of relationships between inhibition and 

phonological measures on the one hand and the other demographic variables on the other, which 

may be due to the nature of our participants’ context of learning. Having acquired their L2 in a 

foreign language classroom (mostly after age 8), the learners received (and continue to receive) 

input that is fundamentally different in both quality and quantity from learners in an immersion 

setting (Piske, 2007). Because learners in foreign language settings have less input with which to 

develop their L2 phonological categories, small differences in their age, L2 proficiency, 

exposure, or motivation may not be enough to affect phonological category development. 

 

General Discussion and Conclusion 

The present study investigated whether language learners with better inhibitory skill are also 

better equipped to acquire a new phonological system. We hypothesized that late L2 learners’ 

enhanced ability to keep their two phonological systems apart through inhibitory control would 

minimize L1 interference at all levels of phonological processing and would consequently 

enhance this processing, leading to the formation of more targetlike representations for L2 

segments. Our prediction was that stronger inhibitory control would correlate with greater 

accuracy in segmental tasks, thereby indicating that L2 learners with more efficient inhibitory 

control may be better able to suppress the influence of L1 phonological categories and, hence, 
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develop more accurate L2-specific categories during acquisition. We found that when L2 

proficiency was statistically controlled, inhibition was in fact correlated in the expected direction 

with learners’ performance in the perception task and with their consonant production. Vowel 

production did not show any relationship with inhibitory control. Overall, our findings indicate 

that inhibitory control might be implicated in L2 phonological processing and might contribute 

to explaining in part the large variation found in L2 learners’ perception and production 

performance.  

Taken together, the results of this study provided support for the contribution of 

inhibitory control to L2 speech processing in production and perception in a foreign language 

learning context. Despite the fact that all participants were acquiring their L2 under the 

constrained input conditions of a foreign language classroom, they still exhibited large 

intersubject differences in their L2 perception and production, which might partly be explained 

by individual differences in inhibitory control. This learning context differs radically from that in 

previous research targeting the effects of inhibition on phonological processing in bilinguals. In 

Lev-Ari and Peperkamp’s (2013) study, where individual differences in inhibitory control were 

found to explain intersubject variation in how strongly bilinguals’ native English VOT was 

affected by L2 French use, participants were living in a L2 environment. In the foreign language 

classroom context, which is characterized by L1 dominance and limited L2 exposure and use, 

learners’ inhibitory control capacity might play a bigger role and make a more important 

difference in how accurately L2 sound representations develop than in an immersion setting, 

where the much larger L2 exposure and use may contribute more fundamentally to L2 

phonological development, compared to learners’ cognitive skills. In a L2 environment such as 

immersion, the L1 might be inhibited more easily and be therefore less accessible, and while this 
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may result in more accurate L2 performance, it may not necessarily lead to bilinguals developing 

stronger inhibitory control. This, we believe, might depend on how much a given learner 

switches between the two languages. In fact, Linck et al. (2008) found evidence of classroom L2 

learners in a L1 environment significantly outperforming learners in an immersion setting in a 

nonlinguistic inhibitory control task, such as the Simon task. This suggests that individual 

differences in inhibitory control might explain a great deal of variance in L2 speech perception 

and production despite the limited L2 exposure and use typical of classroom environments. 

The mechanism underlying this relationship can, at this point, only be speculative. Our 

approach relates individual differences in inhibitory control to learners’ ability to selectively 

activate one phonological system and deactivate the other for the purpose of enhancing 

phonological processing and acquisition. Accordingly, temporarily suppressing the activation of 

a L1 system, at any level of phonological processing, would allow learners to minimize L1 

perceptual interference, thus facilitating the encoding of more accurate L2 phonological 

representations. Consequently, inhibitory control could be an essential component of executive 

function facilitating L2 phonological acquisition. Assessment of learners’ inhibitory control is 

also dependent on the task used to measure it (e.g., verbal vs. nonverbal) or the type of inhibitory 

control (e.g., intentional vs. unintentional) that the task taps into. The kind of inhibition we 

examined is unintentional and appears to fall under the resistance to proactive interference type 

(Friedman & Miyake, 2004). In order to increase the reliability of these findings, it is important 

to obtain measures through tasks requiring intentional as well as unintentional inhibition, and to 

identify robust tasks through study replication. 

Our findings point to learners experiencing a specific benefit in terms of segmental 

category acquisition from having strong inhibitory control. Do these results mean that having 
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strong inhibitory control is always “good” for L2 learners? Perhaps not. Depending on the 

specific situation, strong inhibitory control may not always be linked to a positive outcome: This 

directionality again depends on the language task performed and on the kind of inhibition 

involved, as well as on the degree of language switching required by the task or the language 

context or situation. We predict that learners with weaker inhibitory control might be more 

comfortable switching between their two languages, and situations that require such switches 

might favor speakers who overall keep both languages coactivated (and therefore inhibit either 

language less). Conversely, learners with strong inhibition skills are predicted to be less efficient 

at switching between languages (showing larger switch costs) but would potentially have more 

clearly separated phonological systems and more precise L2 phonological representations (see 

Lev-Ari & Peperkamp, 2013, for a related claim). This is the first study targeting the role of 

inhibitory control as a means of suppressing L1 interference in L2 speech perception and 

production for learners in a foreign language context. Our results add to the growing literature on 

inhibition and language, and show the widespread and generalized nature of the interplay 

between language and inhibitory control. 

 

 

Notes 

1 Participants took part in an audiometry test, an inhibitory control task, an attention control task, 

an ABX categorization task, a production task, and a working memory task. They also took a 

vocabulary test and filled out a background questionnaire. 
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2 All variables included in the analysis were normally distributed; one extreme value for 

inhibition in the L2 English group was removed, resulting in N = 33. Age, self-ratings, and 

length of residence abroad were not normally distributed and were not included. 

3 We thank Pavel Trofimovich for pointing this out. 
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